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Abstract— We study the problem of collaborative trans-
portation of cable-suspended payload using two quadcopters.
While previous works on transportation using quadcopters
emphasize more on autonomous control and generating complex
trajectory, in this paper a master-slave strategy is implemented
where the master quadcopter is controlled by human and the
slave quadcopter tries to stabilize the oscillations of the payload.
Two quadcopters with a cable-suspended payload system is
under-actuated with coupled dynamics and hence, manual
control is difficult. We use Lagrangian mechanics on a manifold
for deriving equations of motion and apply variation based
linearization to linearize the system. We designed a Lyapunov
based controller to minimize the oscillations of the payload
while transportation, leading to an easier manual control of
master quadcopter.

I. INTRODUCTION

The recent years have seen an increasing trend in the
use of Unmanned Aerial Vehicles (UAVs) in a wide range
of applications including agriculture, payload transportation,
surveillance, photography, etc. The use of UAVs to transport
payloads can be utilized in various fields such as construc-
tion, military operations, disaster relief, delivering packages
to name a few.

The payload can be attached rigidly to the quadcopter or it
can be suspended using cables. In [1], a mechanical gripper
was attached to the quadcopter for grasping and transporting
payloads. The study [2] demonstrated the use of a robotic
arm which was capable of picking and placing an object to
transport from one place to another. However, the use of
grippers or mechanical arms increases the overall inertia of
the system, thereby reducing the agility of the quadcopter.
On the other hand, with cable-suspended loads, the agility
of the quadcopter is retained while still achieving the same
task of picking and placing of the payload.

Load transportation with cable-suspended payload has
been studied for a single quadcopter [3], [4], [5]. Shreenath et
al. [6] showed that the system having an arbitrary number of
quadcopters with a cable-suspended payload is differentially
flat, and used this differential flatness property to generate
dynamically feasible trajectories. A coordinate-free form of
equations of motion was developed for multiple quadcopters
with a cable-suspended payload to avoid singularities and
ambiguities associated with local parameterization, and a
controller was developed to follow a desired trajectory of
the payload while the quadcopters maintain a prescribed
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formation [7]. Gassner et al. [8] demonstrated a cable-
suspended payload using two quadcopters by implementing
a leader-follower scheme wherein the commands to the
quadcopters are calculated based on the visual and inertial
feedback obtained from onboard sensors.

The system of two quadcopters with a cable-suspended
payload is under-actuated with a coupling between the dy-
namics of the suspended payload and that of the quadcopter
which makes the control of overall system complicated.
Previous works accentuate on developing control algorithms
which can track the predefined trajectories of the payload.
The scope of applications for the quadcopter can be further
enhanced, by involving a human operator who can manipu-
late the desired trajectory during the flight. This would also
enable the quadcopters-payload system to navigate through
unknown environments without the need for mapping. How-
ever, the manual control of the system is difficult as the
swinging of the suspended payload destabilizes the quad-
copters.

Designing a controller in local coordinates using Euler
angles exhibit singularities and derivation of equation of
motion (EOM) becomes very cumbersome. So, in this paper,
Lagrangian mechanics on manifold is used for derivation of
EOM. Variation based linearization is used to linearize the
non-linear system. A Lyapunov-based controller is developed
on the linearized model which sends commands to the slave
quadcopter to minimize the swings of the payload and also,
try to stabilize cable oscillations while the master quadcopter
follows the commands of a human operator through an
RC remote control. The reduced oscillations of the payload
results in better stability of the system making manual control
easier as the operator needs to focus only on the motion of
the master quadcopter without worrying about the dynamics
of the system.

The paper is organized as follows. Section II derives the
coordinate-free form of the EOM of the system. In section
III, a controller is developed on the linearized system. Sec-
tion IV discusses the experimental setup used for validation
of the controller, and section V discusses the results of the
experiment. Finally, concluding remarks are presented in
section VI.

II. DYNAMICAL MODEL OF THE SYSTEM

Consider a slender rod (payload) with mass mL ∈ R
having moment of inertia JL ∈ R3×3 suspended at each
end from a quadcopter by cables as shown in Fig. 1. The
position of the centre of gravity (CG) of the payload is given
by xL ∈ R3 and its attitude is given by its rotation matrix,
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RL ∈ SO(3), where SO(3) is the special orthogonal group
defined as SO(3) = {R ∈ R3×3|RRT = I, det(R) = 1}.
The inertial frame is selected as {e1, e2, e3} with the axis e3

pointing downward and the body-fixed frame attached to the
payload is defined as {b1, b2, b3}. The mass and moment of

Fig. 1. Line diagram of two quadcopters transporting a cable-suspended
payload. mL, JL, and xL represent mass, moment of inertia, and position
vector of the payload. mi, Ji, and xi (i = 1, 2) represent the mass, moment
of inertia, and position vectors of the quadcopters respectively. Position
vectors are measured in the inertial frame (e1, e2, e3). qi represent the
attitude of the cable attached to the ith quadcopter. Quadcopter 1 is treated
as the master and quadcopter 2 is treated as the slave quadcopter.

inertia matrix of the ith quadcopter are taken as mi ∈ R
and inertia Ji ∈ R3×3 respectively. The cables used for
connecting the payload to the quadcopter are considered
to be mass-less and have a length li where i ∈ {1, 2}.
Aggressive maneuvers of the quadcopter that can lead to
slackness in the cable are not considered. The direction of
the cables are measured outward from the quadcopter to the
payload, and defined by the unit vector qi ∈ S2 where,
S2 = {q ∈ R3| ‖q‖ = 1}. The configuration manifold of
the system is given by SO(3)× R3 × (SO(3)× S2)2.

The thrust force generated by the ith quadcopter will be
−fiRie3 ∈ R3 with respect to the inertial frame, where
fi is the total magnitude of the thrust force produced by
the ith quadcopter and Ri ∈ SO(3) is the rotation matrix
representing the attitude of the ith quadcopter. In addition to
this, the quadcopter also produces a moment Mi ∈ R3 with
respect to its body-fixed frame.

A. Lagrangian

The kinematic equations for the quadcopters, cables, and
payload are given as [9]

Ṙi = RiΩ̂i (1)
q̇i = ω̂iqi (2)
ṘL = RLΩ̂L (3)

where ωi ∈ R3 is the angular velocity of the ith cable
which satisfies the condition qi · ωi = 0. Also, ΩL ∈ R3

is the angular velocity of payload and Ωi ∈ R3 is the
angular velocity of the ith quadcopter respectively in their
corresponding body-fixed frame. The hatmap ̂ : R3 −→
SO(3) is defined as x̂y = x × y for all x, y ∈ R3. The
inverse of the hatmap is called the veemap and is denoted
by ∨ : SO(3) −→ R3. The position of the ith quadcopter can
be written as,

xi = xL +RLρi − liqi (4)

where ρi is the vector from the CG of the payload to the
point where the ith cable is attached to the payload. The
total kinetic energy of the system is calculated as

T =
1

2
mL ‖ẋL‖2 +

1

2
m1 ‖ẋ1‖2 +

1

2
m2 ‖ẋ2‖2

+
1

2
ΩL· JLΩL +

1

2
Ω1· J1Ω1 +

1

2
Ω2· J2Ω2 (5)

and total potential energy of the system is calculated as

V = −mLge3·xL −m1ge3·x1 −m2ge3·x2 (6)

Using Eq. (5) and (6), the Lagrangian of the system can
be calculated as L = T − V .

B. Euler-Lagrange Equations

The EOM of the system are derived with the help of
Lagrangian mechanics on the two-spheres S2 and special
orthogonal group SO(3). As did in [10], the infinitesimal
variation of Ri, i ∈ {1, 2} can be expressed in terms of the
exponential map as

δRi =
d

dε

∣∣∣∣∣
ε=0

Riexp(εη̂i) = Riη̂i (7)

where, ηi ∈ R3. and corresponding variation in the body
angular velocity is given by,

δΩi = Ω̂iηi + η̇i (8)

Similarly, the infinitesimal variation of the qi ∈ S2 is given
by,

δqi =
d

dε
exp(εξ̂i)qi = ξ̂i × qi (9)

where, ξi ∈ R3 which satisfies ξi· qi = 0. The corresponding
infinitesimal variation in angular velocity is denoted as δωi.

Using these variations, we derive the Euler-Lagrange equa-
tions of motion (EOM) of the system as follows

MT ẍL −
2∑
i=1

miRLρ̂iΩ̇L −MT ge3 +

2∑
i=1

miRLΩ̂2
Lρi

=

2∑
i=1

ui (10)
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(

2∑
i=1

miρ̂iR
T
L)ẍL + JT Ω̇L − (

2∑
i=1

miliρ̂iR
T
L)q̈i

−(

2∑
i=1

miρ̂iΩ̂LR
T
L)ẋL +

2∑
i=1

miliρ̂iΩ̂LR
T
L q̇i +

ΩL × (JLΩL −
2∑
i=1

miρ̂
2
iΩL)−

2∑
i=1

migρ̂iR
T
Le3

=

2∑
i=1

ρ̂iR
T
Lui (11)

−m1q̂
2
1 ẍL +m1q̂

2
1RLρ̂1Ω̇L −m1l1q̈1 −m1l1||q̇1||2q1

−m1q̂
2
1RLΩ̂2

Lρ1 +m1gq̂
2
1e3 = −q̂2

1u1 (12)

−m2q̂
2
2 ẍL +m2q̂

2
2RLρ̂2Ω̇L −m2l2q̈2 −m2l2||q̇2||2q2

−m2q̂
2
2RLΩ̂2

Lρ2 +m2gq̂
2
2e3 = −q̂2

2u2 (13)

J1Ω̇1 − Ω1 × J1Ω1 = M1 (14)
J2Ω̇2 − Ω2 × J2Ω2 = M2 (15)

where,
MT = mL +m1 +m2

JT = JL −
∑2
i=1miρ̂

2
i

ui = −fiRie3

III. METHODS

A. Controller Design for Simplified Model

Let the desired position of the payload be xLd
and its de-

sired attitude be RLd
= I3×3. Similarly, the desired position

of the cables (i.e., qdi ) is chosen as vertically downward (i.e.,
e3). The desired position of the ith quadcopter will be given
by

xid = xLd
+ ρi − lie3 (16)

From EOM of the system, we can say that control input
to the ith quadcopter is fi and it acts only along the corre-
sponding third body fixed axis. As a result, the translational
dynamics are under-actuated but, the rotational dynamics of
the quadcopters are fully actuated. So, in this simplified
model we have taken a fictitious control input ui ∈ R3

and assumed that the attitude of the quadcopters can be
changed instantly. We have incorporated this attitude control
of quadcopters in the following subsection.

As the dynamics of the system evolve on a nonlinear
manifold, we can use variation based linearization in order to
linearize the system about the desired trajectory as mentioned
in [11]. The actual errors between the current trajectory and
desired trajectory when system evolving on SO(3) can be
given as [12]

eRi
=

1

2
(RTdRi −RTi Rd)∨ (17)

eΩi = Ωi − (RTi Rd)Ωd (18)

where,
Ωi = RTi Ṙi and Ωd = RTd Ṙd

If we assume that the orientation of the ith quadcopter
(Ri) is very close to the desired orientation (Rd) then we
can take the state [ηi, δΩi]T as the error between the desired
and actual states of the system evolving on SO(3). We can
write the error in states [ηi, δΩi]

T as[
ηi
δΩi

]
≈
[
eRi

eΩi

]
=

[
1
2 (RTdRi −RTi Rd)∨

Ωi − (RTi Rd)Ωd

]
(19)

Similarly, assuming that the actual direction qi of the ith

cable is very close to the desired direction qdi , we can take
state [ξi, δωi]

T as the errors between the desired and actual
states of the system evolving on S2. The actual error eqi
between qi and qdi can be defined as [11],

eqi = q̂diqi (20)
eωi

= ωi − (−q̂2
i )ωdi (21)

Same as before, we can write [ξi, δωi]
T as,[

ξi
δωi

]
≈
[
eqi
eωi

]
=

[
q̂diqi

ωi − (−q̂2
i )ωdi

]
(22)

Eq. (19) and Eq. (22) are used for defining the errors
for developing the control algorithm. At the equilibrium
configuration of the system, the payload position and attitude
are xLd

and RLd
= I3×3 respectively and for the ith cable

qid = e3. The position of the ith quadcopter is defined
in Eq. (16) and its orientation is Rid = I3×3. All the
translational and angular velocities of the payload, cables,
and quadcopters are taken to be zero at the equilibrium
configuration. The control input uid to the ith quadcopter
is given by

uid = −fidRide3 (23)

where fid is the magnitude of the total thrust generated by
a single quadcopter and is equal to (mL

2 +mi)g.
The variation of payload position xL is given by

δxL = xL − xLd
(24)

The variation of the payload attitude and cable attitude are
defined as

δRL = RLd
η̂L = η̂L (25)

δqi = ξi × e3 (26)

where, ηL ∈ R3 and ξi ∈ R3 satisfies ξi· e3 = 0. The
variation of the angular velocity ωi is given by δωi ∈ R3 such
that δωi· e3 = 0. So, the third element of ξi and δωi is zero
for any equilibrium configuration. Hence, the state vector
in the linearized model of the system contains CT ξ ∈ R2,
where C = [e1, e2] ∈ R3×2. The variation in the control
input can be taken as δui = ui−uid . The linearized equations
of motion can be written as,

Mẍ+Gx = Bδu+ g(x, ẋ) (27)

Matrices M , G, and B are omitted due to space constraint.
g(x, ẋ) represents the higher order terms. The state vector
x ∈ R10 and the input vector δu ∈ R6 are given by,

x = [δxL, ηL, C
T ξ1, C

T ξ2]T
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δu = [δu1, δu2]T

After neglecting the higher order term g(x, ẋ), we can write
linearized EOM in state space form as

ż = A0z +B0δu (28)

where, z = [x, ẋ]T ∈ R20. A0 ∈ R20×20 and B0 ∈ R20×6

are given by

A0 =

[
010×10 I10×10

−M−1G 010×10

]
, B0 =

[
010×6

M−1B

]
We design a PD controller for the simplified model as,

δui = −Kpx−Kvẋ (29)

where Kp,Kv ∈ R3×10. Putting this value of δui in Eq.
(28), we have,

ż = Acz

where Ac ∈ R20×20 is given as

Ac =

[
010×10 I10×10

−M−1(G+BKp) −M−1BKv

]
To make the equilibrium asymptotically stable, we choose
the gains Kp and Kv such that the matrix Ac is Hurwitz.
Lyapunov based stability is mentioned in the appendix sec-
tion A.

B. Controller Design for the Full Dynamic Model

In section III-A, we ignored the attitude dynamics of the
quadcopters and assumed a fictitious control input ui which
can generate thrust in all three directions independently. In
this section, we design an attitude controller which can orient
the third body-fixed axis of the quadcopter parallel to the
direction of the control input designed previously.

The desired thrust force vector for the ith quadcopter is
defined as

Fi = uid + δui (30)

where, uid is the total thrust vector for the ith quadcopter
at equilibrium condition. The commanded direction for the
third body-fixed axis of the ith quadcopter i.e. b3ci ∈ S2 is
calculated as

b3ci
= − Fi
‖Fi‖

The first body-fixed axis of the quadcopter can be defined
arbitrarily as any continuous function of time, b1ci

(t). How-
ever, as the first and third body-fixed axis are normal to
each other, the arbitrary command b1ci

(t) cannot be followed
exactly. But, the projection of b1ci

(t) onto a plane normal to
the third body-fixed axis can be followed. The second body-
fixed axis can be calculated such that these three axes make
an orthogonal coordinate frame. So, the commanded attitude
of the quadcopter Rci ∈ SO(3) is given as

Rci =

[
−(̂b3ci

)2b1ci

‖(̂b3ci )2b1ci‖
b̂3ci

b1ci

‖b̂3ci b1ci‖
b3ci
‖b3ci‖

]
(31)

Finally, the control input fi and Mi to each quadcopter can
be calculated using the following expressions,

fi = −Fi·Rie3 (32)
Mi = −KRieRi −KΩieΩi (33)

where, eRi
= 1

2 (RTciRi−R
T
i Rci)

∨, eΩi
= Ωi−(RTi Rci)Ωci

and KRi and KΩi are positive constants. Due to space
constraint the stability proof is not discussed in this paper
but it is related to [13].

IV. EXPERIMENTAL SETUP
This section describes the experimental setup used for

validating the geometric controller developed in section III.
The quadcopters used were PlutoX drones by Drona Aviation
Pvt Ltd [14]. For estimating states of the quadcopters and
the payload Vicon motion capture system was used [15].
The attitude and angular velocity of the quadcopters were
determined from the on-board inertial measurement unit
(IMU) while the attitude of the payload and cables was
measured from the Vicon feedback data.

ViCON system

/vicon_bridge Ethernet Cable
Ground Station

200 Hz

WiFi

1000 Hz

SlaveMaster

e3

e1

e2

Vicon Server

Human 

Input

Fig. 2. Communication architecture of the system. The marker data from
the Vicon system is accessed at the ground station via Ethernet cable at 200
Hz using the /vicon bridge package [16] in ROS. The control inputs from
the ground station are then sent to the slave quadcopter through WiFi at
a frequency of 1000 Hz. The master quadcopter receives input commands
from the human operator.

We use Robotics Operating System (ROS), which is a
flexible framework for developing customized robotics ap-
plications, for developing the control algorithm. The com-
munication between the Vicon system and the ground com-
puting station happens via ethernet cables through ROS’s
/vicon bridge package at a rate of 200 Hz. The quadcopters
are equipped with an onboard PID attitude controller, and
the control inputs to the quadcopters are in terms of desired
roll, pitch, and yaw angles along with the throttle input. The
values of desired attitude angles are calculated at the ground
station and communicated to the quadcopters through WiFi
at a rate of 1000 Hz. The communication architecture of the
experimental setup is shown in Fig. 2. Each quadcopter has
a maximum load-carrying capacity of 15g. An MDF strip of
1.5cm× 0.3cm× 60cm having a mass of 24g is used as the
payload. Each end of the payload is suspended from a point
directly beneath the quadcopters with the help of cables of
length 50cm.
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m2 J2

Fig. 3. Master Quadcopter is fully controlled by the human operator who commands it based on their observation of the system. φh, θh and Thh are
the human commands. Slave quadcopter takes the feedback of the attitude and the angular velocities of cable 2 (q2, q̇2) and that of the payload (R0,Ω0).
φ

′
c2

and φ
′′
c2

are the commanded roll angles based on the errors in attitude of the cable 2 (i.e. ξ22 , ξ̇22 ) and the errors in attitude of the payload (i.e.
η02 , η̇02 ) respectively. θ

′
c2

is the commanded pitch angle calculated based on the errors in attitude of cable (ξ12 , ξ̇12 ), Thc2 is the commanded throttle,
calculated using the payload attitude error (η02 , η̇02 ). (Second subscript indicates the coordinate of the particular state.)

While experimenting, no yaw commands were given to the
quadcopters to keep the yaw movement zero. The master
quadcopter is fully controlled by the commands given by
the human operator based on their observations of the
system. The task of the slave quadcopter is to minimize the
oscillations of the payload and cable 2 in order to stabilize
entire system. The complete control architecture is depicted
in Fig. 3. The commanded roll angle, pitch angle, and throttle
to the slave quadcopter are calculated based on the following
equations.

φc2 = φ
′

c2 + φ
′′

c2 (34)

θc2 = θ
′

c2 (35)

Thc2 = Th
′

c2 (36)

where,

φ
′

c2 = Kφ2
ξ22

+Kφ̇2
ξ̇22

(37)

θ
′

c2 = Kθ2 ξ12
+Kθ̇2

ξ̇12
(38)

φ
′′

c2 = Kη03
η03

+Kη03
η̇03

(39)

Th
′

c2 = Kη02
η02

+Kη̇02
η̇02

(40)

As the master quadcopter moves arbitrarily in a particu-
lar direction, the translational position and velocity of the
payload are not necessary as we only concern with the
attitude of the payload. So, in control law, feedback gains
for translational position and velocity of payload are not
considered.

V. RESULTS AND DISCUSSION
Due to movements of the master quadcopter, oscillations

are induced in the cables and the payload. The desired
orientation of the payload is taken as I3×3 measured w.r.t
the inertial frame and the desired cable attitude is along the
e3 axis as discussed in section III.

From Fig. 4 (a), we can see that the slave quadcopter’s
position along e2 (y-position) and e3 (z-position) axes almost
coincide with that of the master quadcopter while the position
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-0.5

0

0.5

1

0 10 20 30 40 50 60 70

-1

-0.5

0

0.5

1

Fig. 4. (a) Translational movements of the Master quadcopter (indicated
by the subscript 1) and Slave quadcopter (indicated by the subscript 2) w.r.t
time, (b) Error in payload attitude eR (c) Error in cable 1 attitude eq1 (d)
Error in cable 2 attitude eq2 . (The number inside the parenthesis indicates
the corresponding axis about which the value is measured.)

values in e1 (x-position) of the slave are around 600 mm
(which is equal to the length of the payload) less than the
position values in e1 of the master. So, the slave quadcopter
tries to reach a position exactly behind the master quadcopter
at the same altitude in order to achieve the desired attitude
of the payload. In Fig. 4 (b), the error in attitude of the
payload about the e2 and e3 axes are plotted. The error
about e2 is due to the difference in the z-position of the
two quadcopters while the error in attitude about e3 is due
to the difference in the y-position of the quadcopters. As
the master moves in y or z-direction, an error in the attitude
of the payload about e3 or e2 respectively is produced, but
the error goes on reducing until the next perturbation occurs
due to the motion of the master quadcopter. Three markers
are necessary to estimate the attitude of the payload. As the
payload is taken as a strip, the third marker is placed at some
offset from the line joining two markers which are placed at
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each end of the strip. Since the payload is suspended at two
endpoints, the payload oscillates about the axis passing from
these two suspended points which lead to some inaccuracies
in the payload attitude measurement. At 20 second, the y-
position of the master quadcopter goes to around −1000 mm,
which creates an error in the payload attitude about e3 axis
(i.e., eRL

about z-axis). The payload attitude controller will
send commands to the slave quadcopter to compensate for
these errors which is evident from the Fig. 4 (a) and (b) after
20 seconds.

Figure 4 (c) and (d) represent the attitude error in the
cable 1 and cable 2 respectively. Since the third component
of the cable attitude error is not contributing in control law,
only the first two components of the cable attitude errors are
plotted. More oscillations in cable attitudes are because of
slave quadcopter is trying to minimize the oscillations of the
payload during the movements of the master quadcopter.

It should be noted that the values of eR(2) and eR(3)
are stabilized about a non-zero baseline (as shown in Fig.
4 (b)) because the payload is suspended using only two
cables leading to some oscillations of the payload about its
first body-fixed axis. Also, the markers on the payload are
placed slightly offset from the point where the cables are
attached to the payload leading to an offset in the cable
attitude measurements as can be seen from Fig. 4 (c) and
(d).

In the current work, a Vicon motion camera capture system
was used to estimate the attitude of the payload and angular
velocities. In future studies, experiments will be conducted
in the outdoor settings where potentiometers will be used
at the cable attachment point on the quadcopters as well as
the payload for estimating the angular position and velocities
of the cables. For estimating the payload attitude, an IMU
can be attached to it. The main contribution of this work
is to expand the scope of applications for a quadcopters by
enabling human control under physical constraints.

VI. CONCLUSIONS

At a time, the human operator cannot fly more than one
quadcopters. But, if quadcopters are physically constrained
using cable-suspended payload, it is possible to operate
multiple quadcopters manually with the help of master-
slave strategy. In this paper, we addressed the problem
of two quadcopters transporting a cable-suspended payload
using a master-slave approach; wherein a human operator
commands the master quadcopter while the slave quadcopter
tries to maintain the payload in the desired orientation
for safe transportation. The experimental results show the
effectiveness of the designed controller in minimizing the
swing of the payload while reducing the error in the payload
attitude. While experimentations, it is also noted that manual
control of the entire system becomes much easier. Hence, the
applicability of the two quadcopter system can be improved
by keeping a human in the loop.

APPENDIX

A. Lyapunov stability for simplified model

Consider a quadratic form of the lyapunov function as
follows,

V (z) = zTPz (41)

where, P is a real, symmetric, positive definite matrix. The
derivative of lyapunov function will be,

V̇ (z) = zT
[
ATc P + PAc + Ṗ

]
z (42)

For the system to be asymptotically stable, V̇ must be
negative definite and for that matrix equation ATc P +PAc+
Ṗ = −Q must be true for some positive definite matrix Q.
So, if we can find matrix P that satisfies the above equation
then it guarantees asymptotic stability of the system.
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