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Abstract— We can make it easier for disabled users to control
assistive robots by mapping the user’s low-dimensional joystick
inputs to high-dimensional, complex actions. Prior works learn
these mappings from human demonstrations: a non-disabled
human either teleoperates or kinesthetically guides the robot
arm through a variety of motions, and the robot learns to
reproduce the demonstrated behaviors. But this framework
is often impractical — disabled users will not always have
access to external demonstrations! Here we instead learn diverse
teleoperation mappings without either human demonstrations
or pre-defined tasks. Under our unsupervised approach the
robot first optimizes for object state entropy: i.e., the robot
autonomously learns to push, pull, open, close, or otherwise
change the state of nearby objects. We then embed these
diverse, object-oriented behaviors into a latent space for real-
time control: now pressing the joystick causes the robot to
perform dexterous motions like pushing or opening. We exper-
imentally show that — with a best-case human operator — our
unsupervised approach actually outperforms the teleoperation
mappings learned from human demonstrations, particularly if
those demonstrations are noisy or imperfect. But our user study
results were less clear-cut: although our approach enabled par-
ticipants to complete tasks more quickly and with fewer changes
of direction, users were confused when the unsupervised robot
learned unexpected behaviors. See videos of the user study here:
https://youtu.be/BkqHQjsUKDg

I. INTRODUCTION

Wheelchair-mounted robot arms have the potential to
improve the lives of over one million American adults
living with physical disabilities [1]. Imagine teleoperating
a wheelchair-mounted robot arm to interact with the envi-
ronment shown in Figure 1. You control the motion of the
robot arm using a joystick [2], and you have in mind some
task that you want to perform. Looking again at Figure 1,
we recognize that there are two likely tasks: reaching for the
cup or interacting with the drawer. If the assistive robot also
recognizes what tasks are possible within this environment,
then it can help you to coordinate the arm’s motion. More
specifically, the robot can directly map your joystick inputs
to complex, task-related behaviors: i.e., pressing down on
the joystick causes the robot arm to reach for the cup, and
pressing right causes the robot to open the drawer.

Recent research enables assistive robots to learn teleopera-
tion mappings from low-dimensional joystick inputs to high-
dimensional robot actions [3], [4]. Within this prior work a
non-disabled person demonstrates the possible tasks to the
robot — i.e., a caregiver kinesthetically guides the robot
through the process of reaching for the cup or opening the
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Fig. 1. Human teleoperating an assistive robot arm. We hypothesize that
assistive robots can learn useful teleoperation mappings without human
supervision by optimizing for high-entropy and object-related behaviors, and
then embedding those diverse actions into a user-controlled latent space.
Here the robot autonomously learns to map the user’s joystick inputs to
dexterous, coordinated motions that reach for the cup or open the drawer.

drawer. After the non-disabled person provides a variety of
different demonstrations, the robot embeds the demonstrated
behavior into low-dimensional latent actions, which the
disabled person then uses to teleoperate the assistive arm.
Returning to our example, the user’s joystick inputs now
map to high-dimensional reaching or opening motions.

This approach to learning latent actions makes sense when
a caregiver is available to provide the initial demonstrations.
But this is not always possible — indeed, a key motivation
for assistive robots is reducing the user’s dependence on
external caregivers. In this paper we therefore propose to
learn latent actions without any human supervision. Our
insight is that — even if the robot does not know what tasks
the human might want to perform — the robot can learn
meaningful and diverse latent actions by realising that:

Humans often use assistive robot to interact with and
change the state of objects in the environment.

We apply this insight to train the assistive robot arm to learn
fully-autonomous policies that have diverse effects on the
world (i.e., we train the robot to maximize object state en-
tropy over repeated interactions). Looking at the environment
in Figure 1, this approach causes the robot to learn behaviors
like picking up the cup, moving the cup, opening the drawer,
and closing the drawer. We next rollout these unsupervised,
diverse behaviors to generate the demonstrations for learned
latent actions. Our hypothesis is that — by learning latent
actions which alter the environment state in object-oriented,
task-agnostic ways — we will autonomously acquire a useful
and assistive teleoperation mapping.

Overall, we make the following contributions:
Formalize Unsupervised Pre-Training for Latent Actions.
Our two-step approach trains the robot to maximize object
entropy, and then uses an autoencoder to embed these diverse
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behaviors into a latent space the human can control. We em-
phasize the fundamental assumptions behind this approach.
Compare with Human-Provided Demonstrations. We col-
lect kinesthetic and teleoperated demonstrations from par-
ticipants. We show that the latent actions learned with our
unsupervised approach result in more successful task com-
pletion than latent actions trained on human demonstrations,
particularly if the human demonstrations are noisy.
Apply in New and Unseen Environments. We conduct
a user study where non-disabled participants teleoperate
the robot arm using our approach and an industry-standard
baseline. Participants must combine multiple latent actions
and generalize to new object locations. Our results indicate
that unsupervised assistance reduces the overall task time.

II. RELATED WORK

In this paper we propose to leverage unsupervised pre-
training as a way to learn latent actions without requiring the
human caregiver or disabled user to provide demonstrations.
Assistive Robots. Wheelchair-mounted robot arms can help
disabled adults perform activities of daily living without
relying on an external caregiver [5], [6]. To accomplish
these tasks, assistive arms must be high-dimensional and
dexterous. But because it is challenging to directly control
every individual aspect of the robot’s motion [7], prior
work suggests that disabled adults prefer assistive arms with
partial or shared autonomy [8], [9]. Here the human uses
an interface (e.g., a joystick) to indicate their desired task,
and the robot provides autonomous assistance or guidance to
help the human complete that task [10]–[13]. Consistent with
prior work, we also develop a partially autonomous frame-
work that keeps the human in control while autonomously
coordinating the motion of the robot arm.
Latent Actions. More specifically, we learn a mapping from
low-dimensional human commands (e.g., 2-DoF joystick in-
puts) to high-dimensional robot actions (e.g., 7-DoF joint ve-
locities). Within the state-of-the-art, a non-disabled caregiver
uses kinesthetic demonstrations to show the robot arm how
to perform a variety of tasks [3], [4]. The robot then embeds
these dexterous, high-dimensional demonstrations into low-
DoF latent actions, and the disabled user controls the robot
with these latent actions. This is analogous to performing
principal component analysis on the expert dataset and letting
the human control the robot using the first few eigenvectors.
Although our work is most closely related to [3], [4],
and [14], we also recognize similarities with reinforcement
learning approaches where the robot learns a latent space
from expert human demonstrations, and then leverages this
latent space to autonomously perform new tasks without a
human-in-the-loop [15]–[20]. The key difference here is that
we will learn latent actions without expert demonstrations —
i.e., without requiring the disabled user or human caregiver
to first show example motions to the robot.
Unsupervised Pre-Training. Instead of collecting demon-
strations from a human, we propose to use unsupervised pre-
training. Here the robot arm learns diverse behaviors without

being given a specific task to accomplish. For example, we
can encourage the robot to optimize for policies that behave
in unexpected ways (i.e., maximizing prediction error) [21],
to learn skills that are very different from one another (i.e.,
maximizing mutual information) [22], [23], or to visit a wide
variety of different states (i.e., maximizing state entropy)
[24], [25]. Works on reinforcement learning have leveraged
the policies generated by unsupervised pre-training as priors
for downstream tasks [26]. But we explore a fundamentally
different setting: we enable the human to control the robot
by mapping their inputs to the diverse learned behaviors.

III. PROBLEM STATEMENT

We consider scenarios where a human is teleoperating
their assistive robot arm in household environments. The
human controls the robot with a joystick interface, and the
robot must interpret the human’s low-dimensional commands
to perform meaningful actions that assist the human.

Environments. As the wheelchair-mounted robot arm moves
around the house the user will inevitably encounter a variety
of environments (e.g., eating in the kitchen or working at a
desk). We formulate each environment as an undiscounted
Markov decision process without rewards: M = 〈S,A, T 〉.
Here s ∈ S is the system state, a ∈ A ⊆ Rn is the robot
action, and T (s, a) captures the dynamics. The action a is
high-dimensional: in our experiments a ∈ A ⊆ Rn is the
joint velocity of the n-DoF robot arm. But the state s is a
higher dimension: it includes both the robot’s state (e.g., its
joint position) and the state of objects in the environment
(e.g., visual observations from an RGB camera). Within our
experiments we simplify this by assuming that we have direct
access to the object states — i.e., we know their position
and orientation1. Hence, we write the state as s = (sR, sO),
where sR ∈ Rn is the robot’s joint position, oi is the pose of
the i-th object, and sO = (o1, o2, . . . , oK) ∈ Rm is a vector
that includes the pose of each object in the environment.

Recall that the human and robot will interact in several
different environments. More formally, let p(M) denote a
distribution over environments, so that as the human moves
around the house they sample environments M ∼ p(M).
We note thatM does not include a reward function because
we do not know what task (or tasks) the human will want to
perform within each environment.

Teleoperation. Returning to our example environment from
Figure 1, the robot does not know whether the human wants
to open the drawer, pick up the cup, or accomplish some
other unexpected task. To convey their intent the disabled
user teleoperates the robot arm by applying joystick inputs
u ∈ U ⊆ Rd. We recognize that there are many teleoperation
devices — such as sip-and-puff tools [6] or brain-computer
interfaces [27] — but here we focus on joysticks since they
are the most prevalent input modality for today’s wheelchair-
mounted robot arms [2]. Importantly, the dimension of the
user’s joystick is lower than the dimension of the robot’s

1This simplification matches recent work on latent actions where the robot
leverages a visual object detection model to extract object locations [4].
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I want to open the drawer halfway
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Learning Diverse Behavior Embedding Behavior

Fig. 2. Our proposed approach for learning assistive teleoperation mappings without human supervision. (Left) Within a simulated environment the robot
arm learns autonomous behaviors that maximize object entropy — e.g., the robot learns to open the drawer different amounts. (Middle) We then sample
trajectories from the trained robot, and aggregate state-action pairs across these trajectories to form the dataset D. The robot embeds these diverse, object
related motions into latent actions by leveraging a state-conditioned autoencoder. (Right) We apply the learned decoder with a human-in-the-loop. The
decoder maps the human’s joystick inputs to coordinated, object-related actions — e.g., the human controls exactly how far the robot opens the drawer.

action space (d < n). Hence, we need a mapping that
converts the human’s low-dimensional joystick inputs into
high-dimensional robot actions.

Latent Actions. Prior work on shared autonomy assumes a
pre-defined teleoperation mapping with multiple modes [7],
[28]. Consider using a 2-DoF joystick to control a robot arm:
your joystick moves the robot’s end-effector along the x-y
axes in one mode, in z-roll axes in another mode, and so
on. By contrast, we seek to learn a projection function that
maps low-dimensional user inputs into high-dimensional,
task-related robot motions. Inspired by recent research on
latent actions [3], we formulate this mapping as a decoder:

a = φ(z, s) (1)

Here z ∈ Z ⊆ Rd is a low-dimensional latent action that the
human can directly input using their d-dimensional joystick.
The decoder φ takes in this input as well as the system state s,
and outputs a high-dimensional robot action a. Our objective
is to learn a decoder φ that enables the robot to perform a
variety of useful actions across environments M ∼ p(M)
so that the human can seamlessly control the robot. But our
challenge is learning this decoder without supervision: how
do we identify meaningful latent actions in the absence of
human-provided demonstrations or pre-defined tasks?

IV. UNSUPERVISED LATENT ACTIONS

To learn an assistive teleoperation mapping we return to
our insight: humans often use robots to alter the state of
objects around them. Put another way, the human’s joystick
inputs should cause the robot to perform actions like reaching
for, picking up, moving, opening, or rotating nearby objects.
Of course, not all of these actions apply to every object — an
opening motion might change the state of a drawer, but will
have no effect on a cup. We therefore propose an approach
where the robot samples environments M ∼ p(M), and
autonomously learns diverse actions for the specific objects
in those environments (see Section IV-A). We then embed
these diverse behaviors into a low-dimensional latent action
space (see Section IV-B). Overall, our unsupervised approach
outlined in Figure 2 learns latent actions that alter nearby
objects (e.g., pressing right to increasingly open the drawer),
enabling the human to teleoperate the robot across a variety
of object-related motions without ever requiring pre-specified
tasks or human demonstrations. We emphasize that both
Sections IV-A and IV-B occur without a human-in-the-loop:

our final output is the learned decoder in Equation (1), which
is then leveraged by the human to control the robot.

A. Learning Diverse Behavior

Intrinsic Reward. Given one or more environments M ∼
p(M), we will leverage unsupervised pre-training to identify
diverse behaviors. Recall that M does not include a reward
function since we do not know what tasks the human has in
mind. Instead, we here specify an intrinsic reward function
that encourages the robot to do two things: (a) maximize
the object state entropy and (b) minimize the distance to
objects. Recall that sO contains the state of each object in
the environment. We want to alter those objects in diverse
ways [21]–[24], i.e., we want to maximize the entropy over
p(sO). But to interact with objects the robot must first reach
them: hence, we shape the intrinsic reward by minimizing
the distance between the robot’s end-effector and the closest
object o ∈ sO. This leads to the reward function:

r(s) = H(sO)− min
o∈sO

d(sR, o) (2)

where H is the Shannon entropy and d(sR, o) is the distance
between the robot’s end-effector and object o. Since comput-
ing state entropy is typically intractable, we approximate it
using the particle-based estimate from Liu and Abbeel [25]:

r(s) ≈ log ‖sO − skO‖ − min
o∈sO

d(sR, o) (3)

Here sO is the current state of objects in the environment and
skO is the k-th nearest neighbor. As the robot interacts with
the environment it maintains a replay buffer of recent object
states: to compute skO the robot simply searches through this
buffer. Intuitively, the first term in Equation (3) rewards the
robot for moving objects into a state sO that is very different
than the object states the robot has recently observed.

Reinforcement Learning. Under Equation (3) the robot is
constantly seeking new and unique object states. Returning
to our example, imagine that the robot closed the drawer
during the previous interaction — during the next interaction,
the robot can increase its reward by opening the drawer.
We accordingly use reinforcement learning to identify au-
tonomous robot behaviors that maximize the discounted sum
of rewards:

∑∞
t=0 γ

t ·r(st). Specifically, we apply Soft Actor-
Critic (SAC), an off-policy reinforcement learning approach
for continuous state and action spaces [29]. When using
our reward from Equation (3), SAC trains the robot to take
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autonomous actions a that maximize the object state entropy
across the replay buffer. The output of the first part of our
approach is therefore a learned robot policy π(a | s) that
generates diverse, object-related motions.

B. Embedding Diverse Behavior to Latent Actions

Dataset. In the second part of our approach we leverage the
learned behavior from Section IV-A to train latent actions.
We start with policy π(a | s), the result of unsupervised pre-
training across one or more environments M ∼ p(M). We
repeatedly rollout this policy to generate robot trajectories
ξ = ((s0, a0), (s1, a1), . . . (sT , aT )). Because the robot has
been trained to maximize object state entropy, each of these
trajectories should have a different effect on objects in the
environment: e.g., one trajectory pushes the cup forward,
another picks it up, and a third opens the drawer. Finally, we
aggregate the state-action pairs across each trajectory to form
a cumulative dataset D = {(s0, a0), (s1, a1), . . .}. Of course,
previous research on latent actions also utilizes a dataset —
but the key novelty here is that D is autonomously generated
by the robot, and does not require any human demonstrations.
Embedding. Now that we have a dataset of diverse, object-
related actions, we will embed these high-dimensional ac-
tions into a low-dimensional latent space. Here we match
prior work on latent actions [3], and leverage a conditional
autoencoder [30]. The encoder ψ : S ×A → Z embeds the
demonstrated behavior into the latent space, and the decoder
φ : Z×S → A from Equation (1) uses the human’s joystick
inputs (i.e., latent actions) to reconstruct robot actions. We
simultaneously train the encoder and decoder to minimize
the action reconstruction loss across the dataset:

L =
∑

(s,a)∈D

∥∥a− φ(ψ(s, a), s)∥∥2 (4)

Finally, we give the trained decoder to the human so that
they can teleoperate the robot arm. To understand why this
approach works, it is important to remember that the decoder
is conditioned on state s (which includes both the robot state
sR and the object states sO). Hence, the way that the robot
interprets the human’s inputs depends on the object locations:
e.g., if the drawer is moved to the right, now the robot will
reach right (and not forwards) to open this drawer.

C. Assumptions
Our approach to assistive teleoperation reduces the re-

liance on external caregivers. However, there is no free lunch
— and here we want to emphasize the two assumptions that
enable us to learn latent actions without human supervision.
Access to (Simulated) Environments. First, we assume that
we know some of the environments the human will interact
with a priori, i.e., we can draw samplesM∼ p(M). During
implementation we form simulated versions of these environ-
ments to run the unsupervised pre-training from Section IV-
A. We can mitigate this assumption by leveraging large-scale
interactive simulations of home environments [31].
Access to Object State. Second, we assume that the robot
can measure the state of objects, i.e., the robot observes sO.

Prior work on latent actions uses pre-trained object detection
models [32] to obtain the object state from RGB images [4].
Object detection and classification is also suitable for our
proposed approach; however, we recognize that this may fail
if the robot’s view of the objects is obstructed.

V. COMPARISON TO HUMAN DEMONSTRATIONS

We have formalized an approach to learning latent actions
without human-provided demonstrations. However, it is not
yet clear how these unsupervised latent actions compare to
supervised latent actions (i.e., latent actions trained on human
demonstrations). Here we collect offline demonstrations from
study participants using a Panda robot arm. We consider both
kinesthetic demonstrations — where participants physically
guide the robot through the tasks — and teleoperated demon-
strations — where participants use a joystick to directly
control the robot’s end-effector. We then train latent actions
on the human-provided datasets, and compare the resulting
teleoperation mappings to our unsupervised approach.

Human Demonstrations. We recruited 7 non-disabled par-
ticipants (ages 24 ± 3.5) to provide both Kinesthetic and
teleoperated (Teleop) demonstrations. In Kinesthetic partic-
ipants physically guided the robot arm: these demonstrations
are suitable for a non-disabled caregiver. By contrast, in
Teleop participants controlled the robot’s end-effector with a
joystick: in practice, these demonstrations could be provided
directly by the disabled user.

To understand how human mistakes affect the latent ac-
tions learned from these datasets, we also considered noisy
versions of Teleop. Here we added zero-mean Gaussian noise
to the participants’ demonstrated actions. We tested three
levels of standard deviation, from σ = 0.0 (i.e., no noise),
to σ = 0.01 and σ = 0.1.

Decoders. After collecting human demonstrations, we used
these demonstrations to train decoders (i.e, latent actions).
More specifically, we formed separate datasets from Kines-
thetic and Teleop, and applied the approach from Section IV-
B to embed these datasets into latent actions. We compared
the resulting decoders to the output of our proposed approach
(Ours). To avoid biasing the results towards our method,
we made sure to collect more state-action pairs from human
demonstrations than from unsupervised pre-training. On av-
erage, |D| = 23.5k for Kinesthetic, |D| = 16.3k for Teleop,
and |D| = 14k for Ours.

Simulated Controller. We controlled the robot using a
simulated human to standardize the best-case performance
of each approach. This simulated human was given a goal
state s∗, and selected greedily optimal latent actions z to
move the Panda robot arm towards that goal state:

z = argmin
z∈Z

∥∥s∗ − T (s, φ(z, s))∥∥2 (5)

Recall that T (s, a) in Equation (5) is the system dynamics.
Although we used a simulated human to control the robot,
these comparisons were all performed on a real robot arm.

Environments. We started with the settings in Figure 3.
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Fig. 3. Simulated human controlling the Panda robot arm with learned latent actions. We compare latent actions trained on human-provided kinesthetic
demonstrations (Kinesthetic) and teleoperated demonstrations (Teleop) to our unsupervised approach (Ours). We also consider Teleop as the participants’
demonstrations become increasingly noisy and imperfect (σ = 0.01, σ = 0.1). Ours outperforms Kinesthetic and noisy versions of Teleop, and is slightly
worse than Teleop (σ = 0.0). Our method enables the robot to match prior latent action approaches without requiring any human demonstrations.

• Pouring: sO contains the pose of the cup and bowl, and
the human’s goal is to pour the cup above the bowl.

• Opening: sO contains the position of the drawers, and
the human’s goal is to open the drawer.

• Scooping: sO contains the position and angle of the lid,
and the human’s goal is to open the lid.

• Pushing: sO contains the position of the ball, and the
human’s goal is to push the ball to three locations.

For Pouring, Opening, and Scooping we embeded the robot’s
actions into a 1-DoF latent space (i.e., the simulated human
can only press right or left on the joystick), and for Pushing
we leveraged a 2-DoF latent space.
Results. Within each environment the simulated human at-
tempted to reach a goal state. We measured the error between
this goal state and the closest state that the robot actually
reached: our results are displayed in Figure 3.

Across all four environments the latent actions learned
from Kinethetic demonstrations were less accurate than
Ours2. Without any noise (i.e., σ = 0), the robots using
Teleop had the lowest final state error (p < .05). But as
the amount of noise increased Ours again outperformed the
Teleop baseline. Viewed together, these results suggest that
— without any human demonstrations — our approach learns
teleoperation mappings that are just as effective as latent
actions trained on human-provided demonstrations.
Follow-up. Can we use human demonstrations to improve
unsupervised latent actions? The robot will inevitably reach
scenarios where human demonstrations are available. Rather
than discarding this data, we propose to combine both human
demonstrations and our unsupervised approach. Recall that

2Different participants provided different kinesthetic demonstrations for
the same task (e.g., moving all the joints or just the last joint when scooping).
This demonstration variability caused the Kinesthetic to perform worse than
Teleop, where the constraint of teleoperating the robot’s end-effector forced
different participants to provide similar demonstrations.
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Fig. 4. Follow-up experiment where we initialize our approach with human
demonstrations (Ours + Teleop). These demonstrations help our approach
avoid local minima (i.e., only reaching two cups), and our approach
improves the demonstrations by optimizing for other high-entropy behaviors.

the robot maintains a replay buffer when learning diverse be-
haviors in Section IV-A: here we initialize the robot’s replay
buffer with human-provided demonstrations. This seeds the
robot’s search with the diverse behaviors that the human has
already shown, enabling the robot to learn additional motions
that build on the demonstrated behaviors.

We conducted a follow-up experiment in the Reaching
environment (see Figure 4). As before, a simulated human
controlled the robot: we embedded the robot’s actions into a
1-DoF latent space, and the simulated human leveraged this
latent space to reach for three cups on the table. But unlike
the previous environments, here Ours performed the worst.
This is because our unsupervised pre-training approach got
stuck in a local minima (and only learned to reach for two
of the cups). Initializing with teleoperated demonstrations
where the human guided the robot to all three cups solved
this problem: Ours + Teleop outperformed the baselines,
including the original Teleop demonstrations.

VI. USER STUDY

During our comparison experiments the robot was only
interacting with a single object (e.g., a cup, drawer, or ball).
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Fig. 5. Task and results from our user study. Participants teleoperated the robot arm to remove clutter (objects 1 and 2), pull the bowl closer to their
person (3), pick up the container (4) and pour it into the bowl, and finally drop the container in the bin (5). We compare our unsupervised approach (where
participants interact with one joystick) to direct end-effector control (where participants can use two joysticks and toggle between two modes). Participants
completed the task more quickly with our approach, but their subjective responses were mixed. Here ∗ denotes p < .05 and ∗∗ denotes p < .07.

To evaluate our approach in more realistic scenarios, we
conducted a user study with non-disabled participants: here
the robot had to generalize to multiple objects in previously
unseen locations (see Figure 5 and supplementary video).
Experimental Setup. Participants teleoperated the 7-DoF
robot arm (Panda, FrankaEmika) using one 2-DoF joystick
(Logitech F310 Gamepad). Participants had to (a) move
clutter out of the way, (b) pull the bowl to their side of the
table, (c) pick up a container, (d) pour the container above
the bowl and (e) drop the empty container into a bin. We
rearranged the locations of the objects between trials.
Independent variables. We compared our unsupervised
latent actions (Ours) to an industry-standard baseline (End-
Effector) [2]. Within End-Effector participants directly con-
trolled the velocity of the robot’s end-effector. They pressed
a button to toggle between two different modes: one mode
controlled the robot’s linear velocity, and the other controlled
the robot’s angular velocity [7], [28]. By contrast, with Ours
the robot mapped the human’s joystick inputs to learned joint
velocities. Similar to End-Effector, the user could press a
button to toggle between two different latent action spaces.
We trained Ours offline using a simulated version of the
environment (i.e., without human demonstrations).
Dependent Variables. We measured the Total Time it took
for each participant to complete the task and the amount of
time users spent interacting with the joystick (Control Time).
We also recorded the joystick input u at each timestep, and
Consistency is the average alignment between these inputs:
(ut−1 · ut)/(‖ut−1‖‖ut‖). Lower Consistency indicates that
the human often changed directions when using the joystick.
Finally, we asked subjects to complete a 7-point Likert scale
survey after finishing each condition. Our survey questions
were arranged into six multi-item scales: how helpful the
robot was, how easy it was to control the robot, whether the
robot seemed to understand the user’s goal, how intuitive the
control interface was, whether the robot moved smoothly, and
if they preferred using that condition.
Participants and Procedure. We recruited 10 participants
from the Virginia Tech community (5 female, average age
24.2 ± 2.9 years). Each participant provided informed written
consent prior to the experiment. We utilized a counter-
balanced, within-subject design: each participant completed
the task twice with Ours and twice with End-Effector.
Between trials we changed the locations of the objects (these

changes were identical across both conditions). Half of the
participants started with Ours. Prior to each condition, par-
ticipants were given up to 5 minutes of practice to familiarize
themselves with the teleoperation mapping.
Hypotheses. We had two hypotheses:
H1. Non-disabled users will complete the task more quickly
when using unsupervised latent actions.
H2. Non-disabled users will perceive robots that leverage
unsupervised latent actions as better partners.

Results. The results of our user study are shown in Figure 5.
We found support for H1: participants completed the task in
less total time with Ours (F (1, 19) = 12.2, p < 0.01) and
participants maintained more consistent joystick inputs with
fewer changes of direction (F (1, 19) = 14.7, p < 0.01).

For our survey results we first confirmed the reliability of
the six scales, and then grouped these scales into a combined
score. The resulting comparisons were inconclusive. None of
differences were statistically significant, although we found
that participants thought Ours was marginally more intuitive
than the baseline (p < .07). The other scales favor Ours,
with the exceptions of easy and prefer. Overall, we were
unable to make any conclusions about H2.
Limitations. During the user study our unsupervised map-
ping occasionally performed actions that participants did not
want. For example, Ours learned to push objects off the
table. Although this behavior matches our intrinsic objective
— i.e., it greatly changes object state — it misses out on the
internal priors or affordances that humans have over these
objects. We believe that the unexpected, additional behaviors
learned with Ours confused the people using this method
(and contributed to mixed user responses). Moving forward
we plan to encode affordances into the learned latent actions;
e.g., the robot should know never to knock over a glass vase.

VII. CONCLUSION

We enabled assistive robot arms to learn teleoperation map-
pings without human demonstrations. Under our two-step
approach the robot first leverages unsupervised pre-training
to optimize for diverse, object-oriented behaviors, and then
embeds those behaviors into a latent space for human control.
We experimentally found that the resulting decoder is on par
with mappings learned from human demonstrations. Our user
study results show that people can efficiently leverage this
unsupervised approach in settings with multiple objects.
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