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Using High-Level Patterns to Estimate
How Humans Predict a Robot will Behave

Sagar Parekh1, Lauren Bramblett2, Nicola Bezzo2, and Dylan P. Losey1

Abstract— A human interacting with a robot often forms
predictions of what the robot will do next. For instance, based
on the recent behavior of an autonomous car, a nearby human
driver might predict that the car is going to remain in the
same lane. It is important for the robot to understand the
human’s prediction for safe and seamless interaction: e.g., if
the autonomous car knows the human thinks it is not merging
— but the autonomous car actually intends to merge — then
the car can adjust its behavior to prevent an accident. Prior
works typically assume that humans make precise predictions
of robot behavior. However, recent research on human-human
prediction suggests the opposite: humans tend to approximate
other agents by predicting their high-level behaviors. We apply
this finding to develop a second-order theory of mind approach
that enables robots to estimate how humans predict they will
behave. To extract these high-level predictions directly from
data, we embed the recent human and robot trajectories into a
discrete latent space. Each element of this latent space captures
a different type of behavior (e.g., merging in front of the human,
remaining in the same lane) and decodes into a vector field
across the state space that is consistent with the underlying
behavior type. We hypothesize that our resulting high-level and
course predictions of robot behavior will correspond to actual
human predictions. We provide initial evidence in support of
this hypothesis through a proof-of-concept user study.

I. INTRODUCTION

Thousands of vehicle crashes caused by driver distractions
are reported every year in the United States. In 2022, for
example, distracted drivers were involved in 11, 605 crashes
leading to 12, 638 fatalities [1]. Autonomous and semi-
autonomous cars present a potential solution to mitigate
human errors and avoid crashes. However, these intelligent
vehicles need sophisticated decision-making algorithms to
safely share the road with pedestrians and human drivers.

Consider an autonomous car (i.e., a robot) driving on a
highway alongside a human vehicle. To understand how the
human will behave, existing works focus on inferring the hu-
man’s objective or intent [2], [3]. For example, is the human
an aggressive or a defensive driver? Is the human trying to
merge into the robot’s lane? Although estimating the human’s
intent offers some insight into how the human will interact,
it does not provide a complete picture. During interactions,
human reasons about not only their own objective, but also
their prediction of how the robot will behave [4]. Returning
to our driving example: if the human thinks the robot is
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Fig. 1. When robots model the behaviors of other robots, they often
develop precise predictions. But when humans try to predict the behaviors
of robots, they are generally not precise. Instead, recent work suggests that
humans focus on the high-level pattern in robot behavior (i.e., merging),
and then make coarse predictions consistent with that pattern. In this paper
we develop a data-driven approach that captures this high-level reasoning,
resulting in more accurate estimates of human predictions.

accelerating to pass them, the human may wait and then
merge behind them. Accordingly, — for the robot to fully
understand how the human will behave — the robot needs
to estimate how the human predicts the robot will behave.

This concept of reasoning over another agent’s mental
model is known as Theory of Mind (ToM) [5]. Specifically,
in this paper we will focus on building a second-order ToM
of the human (e.g., "the robot thinks about how human

predicts the robot will act"). Existing works often focus only
on a first-order ToM: modeling the human’s goal so they
can provide better assistance [6], estimating their strategy in
order to influence the human’s behavior [7], [8], or modeling
their intent to improve collaboration between humans and
robots [9], [10]. Prior research has also explored building
second-order ToM for robots, for instance [11] models how
robot’s actions affect a human’s behavior and leverage this to
develop efficient and influential robot policy. When applied
to our example, these works might expect the human to
precisely predict each individual action of the autonomous
car (see Figure 1, left). However, recent research on human-
human interaction suggests that humans do not precisely
anticipate the actions of other agents [12]; instead, humans
appear to reason over more general and intuitive patterns of
behavior. We therefore hypothesize that:

Humans identify high-level behaviors from robots

movements, and leverage this high-level inference to

approximately predict the robot’s next actions.

Figure 1 highlights this difference. Existing works often treat
humans as if they were robots, and expect the human to
predict the individual accelerations and steering angles of
the autonomous car. By contrast, we assume that humans
look for repeated patterns of behavior (e.g., going straight,
merging lanes), and then classify the robot’s actions under
one of these high-level patterns (see Figure 1, right).
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In this paper, we apply our hypothesis to create an
algorithmic, data-driven method to estimate how humans
predict a robot will behave. Specifically, we develop an
autoencoder that inputs recent human and robot behaviors
and embeds these trajectories into a discrete latent space
(Section IV). This learned latent space (a) inherently forces
an information bottleneck that leads to coarse, human-like
predictions, and (b) classifies the input trajectories into the
discrete, high-level behaviors that were observed in the
training dataset. We show, these discrete latent values often
correspond to human-friendly patterns: e.g., merging in front
of the human, remaining in the same lane, or merging behind
the human (Section V). When we decode these discrete latent
representations, the robot obtains a vector field of predictions
over the environment’s state space. In practice, this enables
the robot to estimate how the human thinks it will move right
now (in its current state), and also during future timesteps
(at other environment states). Our initial user study suggests
that the second-order ToM predictions obtained using this
vector field better align with actual human predictions than
existing baselines (Section VI).

Overall, we make the following contributions:

Formulating Human Predictions of Robot Behavior. We
formalize our second-order ToM setting, where the human
reasons over their own intent and their prediction of the
robot’s behavior. The human knows their prediction but not
the robot’s true policy; conversely, the robot knows its policy,
but not how the human predicts it will behave.

Extracting High-Level Predictions. We develop a represen-
tation learning approach for extracting high-level patterns of
behavior. This approach leverages a discrete latent space to
classify the current interaction into intuitive, human-friendly
behavior (e.g., driving straight, merging). We then decode
this latent value to obtain a vector field of predictions that
the robot can use to estimate how the human thinks it will
behave during the rest of the interaction.

Comparing our Model to User Predictions. We test the
quality of our predictions against actual human users. Across
a driving environment and an obstacle course, we find that
participants’ predictions of robot behavior are more closely
aligned with our method than with existing baselines.

II. RELATED WORK

We focus on estimating human predictions of robot behav-
ior. This problem is rooted in theory of mind, where agents
recursively model each other’s intent.

Modeling Humans. Existing research in human-robot inter-
action has explored how robots can model human behavior.
These works typically focus on estimating the human’s goal,
objective, or intent. For example, in shared autonomy robots
infer the human’s goals [13], [14], their intentions [6], even
their skills [15] in order to assist humans. Alternatively, in
multi-agent interaction robots form high-level representations
of humans [7], [16], [17] to model their behavior (e.g.,
inferring whether human are aggressive or defensive drivers).
Overall, these works form first-order models of the human
(i.e., they estimate what the human is thinking). But they
do not consider how the human reasons over the robot —

i.e., how the human expects the robot to behave during
interaction.

Theory of Mind. Existing literature indicates that humans
predict the behavior of other agents during interaction [18]–
[21]. Accordingly, for robots to accurately model humans, we
need a second-order theory of mind (ToM): the robot must
not only infer the human’s objective, but also reason over
what the human thinks the robot is going to do. Several works
have implemented ToM in robotics [22]–[24], and robots that
use ToM are generally better collaborators than those who do
not [9], [10], [25]. However, current works are often limited
to first-order ToM [9], [26]–[28], or consider second-order
ToM only in goal-reaching tasks with additional modeling
assumptions [24], [26]. By contrast, in this paper we aim to
develop a general purpose, data-driven approach for deriving
second-order ToM models from human and robot trajectories.

Representation Learning. Our approach to achieve this
second-order ToM is grounded in representation learning.
Representation learning offers a natural way to impose
information bottlenecks and extract underlying patterns from
offline datasets. This is commonly achieved through the ap-
plication of autoencoder architectures [29]–[31] that learn a
low-dimensional latent space. For instance, with autoencoder
frameworks, robots can extract skills from complex behaviors
[32], [33] and develop first-order models of a human collabo-
rator [7], [16], [34]. We will similarly leverage autoencoders
to extract high-level, user-friendly representations of how the
human expects the robot to behave.

III. PROBLEM STATEMENT

We consider settings where one robot is interacting with
one human. The human and robot could be collaborating,
competing, or a combination of both. We assume that the
robot has access to a dataset of offline interactions: this
dataset includes the behaviors of the human and robot (e.g.,
data on how the human vehicle and autonomous car drove
around each other in the past). Based on this dataset — and
the human and robot behavior during the current interaction
— the robot tries to model how the human predicts that
robot will behave for the rest of the interaction. Below we
formulate the key aspects of this problem.

Two Player Game. Formally, the human and robot are
playing a two-player game. Let si ∈ S be the state of agent
i, and let ai ∈ A be the action of agent i. In what follows, we
will use i = 1 to refer to the robot and i = 2 to refer to the
human. Both agents (i.e., the human and robot) have policies
that map the system state to actions. The robot’s policy
π1(s) → a1 determines the robot’s actions, and similarly
the human’s policy π2(s) → a2 determines the human’s
actions. Within our problem setting the robot knows its own
policy, but it does not know how the human is modeling the
robot’s policy. On the other hand, the human is unaware of
the robot’s policy π1, though they have an understanding of
their own predictions regarding the robot’s behavior.

Trajectories. Let st = (st1, s
t
2) be the joint state of the

human-robot system at timestep t, and let at = (at1, a
t
2)

be their joint action. In our driving example, state si is
the position of agent i in the environment, action ai is its



velocity, and s captures the positions of both agents along
the highway. A trajectory ξ ∈ Ξ is a sequence of T joint
state-action pairs: ξ = {(s0, a0), . . . , (sT , aT )}.

Dataset. To develop our model of the human’s prediction
we assume access to an offline dataset of N trajectories:
D = {ξ1, ξ2, . . . , ξN}. These trajectories could be collected
from actual human-robot interactions, or by training two
simulated agents and rolling out their interactions. Intuitively,
trajectories may contain patterns of behavior that human’s
recognize: for example, the trajectory of the autonomous
car and human car could correspond to passing, merging, or
yielding behaviors. We will refer to these high-level patterns
of behavior as z ∈ Z . We emphasize that the robot is not
given z a priori; instead, the robot must extract these high-
level behaviors from the trajectory dataset D.

IV. EXTRACTING HIGH-LEVEL BEHAVIORS FOR

INTUITIVE HUMAN PREDICTIONS

Our objective is to estimate how humans predict a robot
will behave. In order to characterize these predictions, we
utilize our hypothesis: humans, unlike robots, do not make
precise, step-by-step predictions of robot motion [12]. In-
stead, humans reason over the robot’s motion using high-
level patterns (e.g., passing, merging), and then apply these
patterns to make coarse estimates of the robot’s action. In
this section, we develop a representation learning approach
that seeks to emulate this human process. Specifically, we
use an offline dataset of interactions to train an autoencoder
that learns a discrete latent space. The discrete latent space is
designed to introduce an information bottleneck that extracts
distinct, high-level patterns of robot behavior. Returning to
our driving example: one discrete value might correspond
to the robot staying in the same lane, while another might
capture a robot merging into the human’s lane. In what
follows, we provide the details of this approach. We start
with an introduction of the network architecture. Next, we
describe the procedure for extracting high-level behaviors
from this model. Finally, we leverage the trained model to
estimate a human’s predictions of robot actions.

Model Architecture. As described in Section III, each
trajectory ξ is an interaction between two agents. Agents may
demonstrate different behaviors during different interactions.
Accordingly, we want to learn a low-dimensional space of
behaviors Z that can distinctly represent the different types
of behaviors demonstrated by the robot. To this end, we use
a special class of autoencoders with finite scalar quantization
[31]: instead of a continuous latent space, finite scalar quan-
tization embeds trajectories to a discrete latent space with a
fixed number of points. When trained, each of the discrete
latent vectors corresponds to a different class of behavior
demonstrated by the robot (see Figure 2). Consider a latent
space of dimension d, where the autoencoder employs a set
of L distinct values within the interval [−1, 1] to quantize
each of the d channels. Each channel of the latent vector
can have only one of the L values, and the entire latent
space has Ld discrete vectors. Mathematically, for a latent
vector z, each channel zi is linearly scaled to an integer in

the range [0, L− 1] with the equation:

zinti = round

(

L− 1

2
(tanh (zi)) + 1

)

(see [31] for details). This integer is then re-scaled to a
discrete value within the range [−1, 1] by applying the
formula:

z
q
i =

2

L− 1
zinti

In practice, this scaling and re-scaling maps each chan-
nel of the embedding z to a single value in {−1,−1 +

2

L−1
, . . . , 1}. For example, if we let d = 3 and L = 2,

then the discrete latent space will contain 23 = 8 vectors.
Each channel in this vector can have a value of −1 or
1; therefore, the discrete latent space will be a set Z =
{(−1,−1,−1), (−1,−1, 1), (−1, 1, 1), . . . , (1, 1, 1)}.

Now that we have described the discrete latent space,
we are ready to analyze our overall autoencoder. This au-
toencoder consists of an encoder network, which inputs a
trajectory ξ and embeds it to the discrete latent space z, and a
decoder network, which takes the latent value z and attempts
to reconstruct parts of the input trajectory ξ. Ideally, we
would train the encoder and decoder networks to accurately
reconstruct the trajectory data. However, using a discrete
latent space presents fundamental challenges. Specifically,
since the quantization operation is not differentiable, normal
gradient-based optimization techniques — such as standard
backpropagation — cannot be directly applied. To solve this
problem, we utilize a straight-through estimator technique
that copies the gradients computed from the decoder directly
to the encoder, allowing the encoder to be updated and
refined during optimization [30].

This solution enables us to take advantage of the quan-
tized latent space. Here, discretization provides a significant
bottleneck in the information flow from encoder to decoder
(see Figure 2) by limiting the number of latent vectors
available for encoding. Consequently, to minimize the loss
function, the learned latent space must spread information
across the quantized bins: i.e., each latent value should
capture a different behavior pattern. Returning to our driving
example, in Figure 2, three distinct behaviors of the robot —
driving straight, merging left, merging right — are mapped to
different latent vectors z ∈ Z . More generally, quantization
of the latent space to discrete values has been shown to avoid
posterior collapse — where the latent values fail to capture
meaningful representations [30], [31], [35].

Encoding High-Level Behaviors. So far we have described
our overarching autoencoder architecture with a discrete
latent space. Next, we focus on the details for the encoder
and decoder. The encoder ψ is a fully connected network
that maps trajectories to discrete values: φ(ξ) → z. More
specifically, this encoder maps the trajectory of the two in-
teracting agents ξ = {(s0, a0), . . . , (sT , aT )} to a quantized
latent vector z ∈ Z from the discrete latent space.

Decoding High-Level Behaviors to Predict Actions. Once
we embed the interaction trajectory to a discrete value (i.e., to
a high-level behavior), our final step is to convert this high-
level behavior into a specific prediction about the robot’s
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Fig. 2. Our proposed model for learning to estimate how humans predict
a robot will behave. We develop an autoencoder with three parts: (a) an
encoder φ that inputs trajectories and outputs discrete latent values, (b) a
discrete latent space z where each different value corresponds to a different
high-level behavior, and (c) a decoder ψ that takes the current state and
high-level pattern and predicts the robot’s next n actions. During training,
the decoder additionally reconstructs action sequences aT−k+i

1
for a state

sT−k from the input trajectory in order to learn the discrete latent space.

actions. We achieve prediction using the decoder φ(z, sT ).
This decoder inputs the latent vector z and sT , the most
recent state of the human and robot. The decoder then maps
this current state and the high-level pattern to a sequence of
robot actions. To effectively train our autoencoder model, we
actually leverage this decoder twice.

First, we use it to predict the next n robot actions:
[aT+1

1 , aT+2

1 , . . . aT+n
1 ]. The error between our model’s pre-

diction and the real actions of the robot is:

Lpred =
1

n

T+n
∑

k=T+1

(

ak1 − âk1
)2

(1)

where âk1 is the action at timestep k output by our decoder,
and ak1 is the robot’s true action at the same timestep.

Second, we leverage our decoder to reconstruct a series of
n actions from the input trajectory. Here we sample a random
state st from trajectory ξ, and then attempt to reconstruct the
next n robot actions: [at+1

1 , . . . , at+n
1 ]. The error between the

true actions and the prediction is:

Lrecon =
1

n

t+n
∑

k=t

(

ak1 − âk1
)2

(2)

The purpose of this reconstruction loss is to train the latent
space. If each value of z ∈ Z corresponds to a different high-
level behavior, then passing z and st into the decoder should
be sufficient to accurately anticipate the rest of the robot’s
behavior. For instance, if the encoder embeds a portion of the
trajectory to a z that captures an autonomous car merging,
then the network can predict how that car will continue to
merge for the remainder of the trajectory.

Training. We train our encoder, latent space, and decoder
using both losses: the prediction loss Equation (1) and the
reconstruction loss Equation (2). This results in the model
shown in Figure 2, where the encoder takes in a trajectory
of recent behavior and maps that trajectory to a high-level
pattern. The decoder then converts the current state and
the high-level pattern into a predicted sequence of robot
actions. As a reminder, we recognize that the robot knows

its own policy — the robot could precisely say what actions
it will take next. But the purpose of this model is not to
predict the robot’s actions accurately; instead, we are trying
to develop a prediction that matches how the human reasons
over the robot. We will put our model to the test in the
following sections. First, we will explore the types of high-
level behaviors that our network captures, and then second,
we will compare the predictions from our network to the
predictions of actual users.

V. TESTING THE ENCODED HIGH-LEVEL BEHAVIORS

In this section we explore the types of high-level behaviors
that are extracted by our approach. Here we do not use actual
human data; instead, we consider synthetic interactions, and
study whether the underlying patterns our algorithm recovers
from these interactions could match with intuitive human
interpretations. We consider two multi-agent environments
with a human and robot: Highway and Obstacle.

Environments. In the Highway environment one human-
driven vehicle is on the same multi-lane road as an au-
tonomous car (see Figure 3, top row). Both cars could remain
in their current lanes, the human could merge into the robot’s
lane, or the robot could merge into the human’s lane. In
the Obstacle environment the two agents move towards their
respective goals while avoiding static obstacles (see Figure 3,
bottom row). There are four total goals in the environment,
and the goals assigned to the human and robot are chosen
randomly at the start each each new interaction.

Training. For both environments we collect a dataset of
trajectories D. In order to explore the types of patterns
learned by our system, in this section we generate these tra-
jectories using simulated human and robot data. Specifically,
we give the simulated human and robot reward functions, and
then sample trajectories that optimize these reward functions
using model predictive control (in Highway) or the soft-actor
critic algorithm (in Obstacle) [36]. Overall, in the Highway

environment we collect 2000 synthetic trajectories, and in the
Obstacle environment we generate 2000 trajectories. Given
this dataset D of human and robot interactions, we train our
method using the method described in Section IV.

Visualizing High-Level Behaviors. Our method embeds
the human-robot trajectories into a discrete latent space.
Based on the properties of our model structure, this latent
space should theoretically cluster different interaction pat-
terns within different latent vectors. In Figure 3 we show
experimental evidence to support this distinct clustering.

To obtain this figure we first trained our method on the
offline dataset, and then sampled a grid of states throughout
the environment. At every state we visualized the action (i.e.,
human prediction) output by our decoder using each discrete
value of z. For example, in the Highway environment we
selected latent values z1, z2, and z3, and then decoded each
state with those latent values to obtain three different vector
fields. Examining the results, we notice that these vector
fields align with intuitive explanations of robot behavior.
Within the Highway environment (top row of Figure 3) the
vector fields appear to correspond to the robot merging into
the right lane, the robot going straight, and the robot merging



Fig. 3. Human predictions of robot behavior extracted by our method. The human is shown in gray, and the robot is shown in green. Our approach first
embeds the current interaction into a discrete representation z ∈ Z . We then fix that value of z, and extract the actions we think the human will predict
across the workspace. This results in a vector field that visualizes the high-level pattern z. (Top) In the Highway environment, our method autonomously
extracts three high-level behavior patterns of the robot: merging into the right lane, staying straight, and merging into the left lane. (Bottom) In Obstacle,
our method identifies the goal-reaching movement patterns of the robot, where each different z predicts actions that move towards a specific goal. These
results suggest that our data-driven approach is able to learn high-level behaviors that align with human explanations (e.g., merging, going to the left goal).

into the bottom lane. Similarly, in the Obstacle environment
(bottom row of Figure 3) the vector fields approximately
capture how the robot might move to different goal locations.
Overall, these simulation results suggest that our autoencoder
design is able to extract distinct high-level patterns, and
that these high-level patterns align with how humans might
interpret the robot’s behavior.

VI. USER STUDY

Our ultimate goal is to enable a robot to estimate how
humans predict it will behave. In Section V we found that
our proposed approach was able to identify the high-level
behavior demonstrated by the robot. Now, in this section we
validate whether the robot’s extracted behaviors align with
those that humans attribute to the robot.

Independent Variables. We compare our method (Ours)
with a standard variational autoencoder (VAE) [29]. VAE is a
commonly used architecture to extract high-level information
about an agent from its trajectories [16], [32], [34]. Both
of these methods map the robot’s trajectories into a low-
dimensional representation which extracts the robot’s high-
level behaviors. However, the structure of this representation
space is different for the two architectures — while VAE

learns a Gaussian posterior over a continuous space, Ours

learns a finite, discrete space. The discretization allows our
method to extract intuitive, user-friendly behaviors from
interactions, while the VAE learns more precise, robot-like
estimates. Both the methods are pre-trained on the same
dataset of interactions D as explained in Section V.

Dependent Measures. We evaluate our method using objec-
tive and subjective measures. First, we assess how closely the
actions predicted by each model align with those made by

participants by calculating the cosine distance, referred to as
the alignment error. The alignment error ranges from 0 to 2,
where 0 indicates perfect alignment between model predic-
tions and participant predictions, and 2 indicates completely
opposite predictions.

Next, we validate that the high-level behaviors extracted
by our method correspond to the high-level behaviors at-
tributed to the robot by humans. To this end, we compare
the predictions associated with different latent vectors in
our discrete representation space to those made by the
participants, ensuring that the learned behaviors align with
human expectations.

Experiment Setup. Participants were asked to predict the
movement of a robot in the two environments introduced
in Section V: Highway and Obstacle. In the Highway en-
vironment, two agents — the robot and human — drive
in parallel lanes alongside each other. In the Obstacle en-
vironment, the two agents navigate toward their respective
goals. Participants were shown a brief segment of the two
agents’ movement over a span of 5− 7 timesteps. Based on
this observation, participants were then asked to predict the
robot’s future actions over the next 3 timesteps.

Participants and Procedure. We conducted an online user
study with 22 participants recruited from the Virginia Tech
and University of Virginia communities. Every participant
completed 10 trials in each of the environments. In each
trial, they observed 4 full interactions, followed by a partial
segment of an interaction. After viewing these trajectories,
participants predicted the robot’s next 3 actions, starting from
5 different initial states, denoted s1. Additionally, both Ours

and VAE models were used to map the interaction segment
to a high-level behavior z within the model’s representation
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Fig. 4. Results from our user study. Participants observe a segment of human-robot motion and predict how the robot will behave. We compare these real
predictions to the predictions made by our method and the baseline. (Top-left) The plot shows the mean alignment error of both methods. The error value
can range from 0 (indicating parallel prediction) to 2 (indicating opposite predictions). Our method achieves a significantly lower error than the baseline in
both environments, Highway and Obstacle. Next, we compare the vector field of the participants’ predictions with the vector field decoded from the most
common latent vectors. (Top-right) In Highway, we obtain two prominent movement patterns: the robot merging left, and the robot merging right. The
predictions made by our model (orange) align with the participants’ predictions. (Bottom) In Obstacle, we obtain three notable goal-reaching behaviors.
The behaviors decoded from each latent clearly indicates the robot’s goal, and this appears to align with the participant’s model of the robot.

space. The decoder in each model then predicted the actions
for the 5 states using the corresponding z.

Hypothesis. Our hypothesis is that:
Ours will more accurately match the predictions

made by human participants compared to VAE.

Results. Our results are summarized in Figure 4. The plots
in the top-left illustrate the average alignment error across
all participants in both environments. We observe that Ours

achieves a lower alignment error compared to VAE in
both the Highway and Obstacle. A two-tailed paired t-test
confirms that these differences in the error are statistically
significant (p < 0.01). This demonstrates that our method
is more accurate at estimating how participants predicts the
robot will move. This finding supports our hypothesis.

Next, we qualitatively compare the high-level behaviors
extracted by Ours with the behaviors attributed to the
robot by participants. Specifically, we evaluate whether the
intuitive explanations of robot behavior, corresponding to
different latent vectors z, are consistent with empirical obser-
vations. To this end, we plot the robot’s predicted for each z
alongside the participants’ predictions, as shown in Figure 4.
The top-right plots present the results for Highway, while the
bottom row plots display the results for Obstacle.

From the vector fields, we can intuitively infer the robot’s
behavior. In the Highway environment, the vector fields
indicate that the robot either merges left or merges right,
which aligns with the participants’ predictions. Similarly, in
the Obstacle environment, the vector fields converge toward
specific goals, and participants’ predictions follow the same
pattern for each latent vector.

Limitations. While our method provides promising results,

it does not perfectly cluster distinct interaction patterns into
separate latent vectors. This is evident in the second latent
vector z in the Obstacle environment — where our model
predicts the robot moving toward the bottom-right goal,
participants’ predictions suggest that the robot sometimes
moves toward the bottom-left goal. Although the results
are encouraging, further work is required to develop more
sophisticated second-order Theory of Mind (ToM) models
for robots, enabling them to reason more effectively about
human mental models.

VII. CONCLUSION

We have presented a theory of mind approach that enables
a robot to estimate how humans predict it will behave. Unlike
previous research — which often assumes that humans will
precisely infer the robot’s policy — we recognized that
humans typically rely on course, high-level predictions. For
instance: instead of predicting the exact speed and velocity
of an autonomous car, the human might reason over whether
that car is passing or merging. To extract these high-level
predictions directly from interaction data we introduced an
autoencoder with a discrete latent space. This latent space
served as an information bottleneck (providing course pre-
dictions), and its discrete structure yielded different types of
behavior (capturing high-level patterns). We tested the feasi-
bility of our method to accurately estimate human predictions
through a two-part online user study. Our results suggest that
separating the robot’s behavior into high-level clusters leads
to more accurate estimates than precise baselines.
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